Glucoamylase: structure/function relationships, and protein engineering.
نویسندگان
چکیده
Glucoamylases are inverting exo-acting starch hydrolases releasing beta-glucose from the non-reducing ends of starch and related substrates. The majority of glucoamylases are multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain by an O-glycosylated linker region. Three-dimensional structures have been determined of free and inhibitor complexed glucoamylases from Aspergillus awamori var. X100, Aspergillus niger, and Saccharomycopsis fibuligera. The catalytic domain folds as a twisted (alpha/alpha)(6)-barrel with a central funnel-shaped active site, while the starch-binding domain folds as an antiparallel beta-barrel and has two binding sites for starch or beta-cyclodextrin. Certain glucoamylases are widely applied industrially in the manufacture of glucose and fructose syrups. For more than a decade mutational investigations of glucoamylase have addressed fundamental structure/function relationships in the binding and catalytic mechanisms. In parallel, issues of relevance for application have been pursued using protein engineering to improve the industrial properties. The present review focuses on recent findings on the catalytic site, mechanism of action, substrate recognition, the linker region, the multidomain architecture, the engineering of specificity and stability, and roles of individual substrate binding subsites.
منابع مشابه
THE PRODUCTION OF GLUCOAMYLASE BY ASPERGILLUS NIGER UNDER SOLID STATE CONDITIONS (RESEARCH NOTE)
In this study, Glucoamylase production by Aspergillus Niger was investigated under solid state conditions with low cost by-products of agricultural processes as substrate. Highest enzyme production was observed when a combination of wheat bran (WB) and corn flour (CF) was used as compared to WB+ rice bran, WB+ rice flour and WB alone. Different additions of (CF) were tested and WB+ 10% CF showe...
متن کاملMutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly.
Glucoamylase mutations to reduce isomaltose formation from glucose condensation and thus increase glucose yield from starch hydrolysis were designed to produce minor changes in the active site at positions not totally conserved. Tyr175-->Phe and Ser411-->Gly glucoamylases had catalytic efficiencies on DP 2-7 maltooligosaccharides like those of wild-type glucoamylase, while the catalytic efficie...
متن کاملStarch-binding domain shuffling in Aspergillus niger glucoamylase.
Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary st...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملBioconversion and Enzymatic Activities of Neurospora Sitophila Grown Under Solid State and Submerged Fermentation on Sago Hamps (RESEARCH NOTE)
N.sitophila was grown under controlled conditions of solid state and submerged fermentation on Sago hampas. The optimum conditions of protein enrichment previously established for sugar beet pulp was used for this study. Under this condition the protein content of Sago hampas under solid state increased from 1.4 to 14.45% (W/W) whereas for Sago hampas and Sago starch, the protein content under ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1543 2 شماره
صفحات -
تاریخ انتشار 2000